摘要:Sam Altman 刚刚突然发了一篇反思博客,博客中Sam说这些年是他一生中迄今为止最有收获、最有趣、最好、最疲惫、最紧张,尤其是过去两年——最不愉快的几年,OpenAI已经知道如何实现传统定义的AGI,现在OpenAI转向更远大的目标:超级智能
Sam Altman 刚刚突然发了一篇反思博客,博客中Sam说这些年是他一生中迄今为止最有收获、最有趣、最好、最疲惫、最紧张,尤其是过去两年——最不愉快的几年,OpenAI已经知道如何实现传统定义的AGI,现在OpenAI转向更远大的目标:超级智能
以下是中英文全文分享给大家
Sam Altman
山姆·奥特曼
Reflections
反思
The second birthday of ChatGPT was only a little over a month ago, and now we have transitioned into the next paradigm of models that can do complex reasoning. New years get people in a reflective mood, and I wanted to share some personal thoughts about how it has gone so far, and some of the things I’ve learned along the way.
ChatGPT 的第二个生日才过去一个多月,现在我们已经过渡到了下一个模型范式,它可以进行复杂的推理。新年让人们陷入沉思,我想分享一些个人想法,关于迄今为止的进展,以及一路走来我学到的一些东西。
As we get closer to AGI, it feels like an important time to look at the progress of our company. There is still so much to understand, still so much we don’t know, and it’s still so early. But we know a lot more than we did when we started.
随着我们越来越接近 AGI,我觉得现在是时候回顾一下我们公司的进展了。还有很多东西需要理解,还有很多东西我们不知道,现在还为时尚早。但是我们比刚开始的时候知道的要多得多。
We started OpenAI almost nine years ago because we believed that AGI was possible, and that it could be the most impactful technology in human history. We wanted to figure out how to build it and make it broadly beneficial; we were excited to try to make our mark on history. Our ambitions were extraordinarily high and so was our belief that the work might benefit society in an equally extraordinary way.
我们近九年前创立 OpenAI,因为我们相信 AGI 是可能的,并且它可能是人类历史上最具影响力的技术。我们想弄清楚如何构建它并使其广泛受益;我们很高兴能尝试在历史上留下自己的印记。我们的雄心壮志异常高远,我们也同样坚信这项工作可能会以同样非凡的方式造福社会。
At the time, very few people cared, and if they did, it was mostly because they thought we had no chance of success.
当时,很少有人关心,如果有的话,那主要是因为他们认为我们没有成功的机会。
In 2022, OpenAI was a quiet research lab working on something temporarily called “Chat With GPT-3.5”. (We are much better at research than we are at naming things.) We had been watching people use the playground feature of our API and knew that developers were really enjoying talking to the model. We thought building a demo around that experience would show people something important about the future and help us make our models better and safer.
2022 年,OpenAI 还是一个安静的研究所,致力于开发一个临时名为“与 GPT-3.5 聊天”的项目。(我们在研究方面比在命名方面要强得多。)我们一直在观察人们使用我们 API 的 playground 功能,并且知道开发人员真的很喜欢与模型交谈。我们认为围绕这种体验构建一个演示将向人们展示关于未来的一些重要信息,并帮助我们使我们的模型更好、更安全。
We ended up mercifully calling it ChatGPT instead, and launched it on November 30th of 2022.
我们最终还是将其命名为 ChatGPT,并于 2022 年 11 月 30 日发布。
We always knew, abstractly, that at some point we would hit a tipping point and the AI revolution would get kicked off. But we didn’t know what the moment would be. To our surprise, it turned out to be this.
我们一直抽象地知道,在某个时刻,我们会达到一个临界点,人工智能革命将开始。但我们不知道那个时刻会是什么。令我们惊讶的是,结果就是这个。
The launch of ChatGPT kicked off a growth curve like nothing we have ever seen—in our company, our industry, and the world broadly. We are finally seeing some of the massive upside we have always hoped for from AI, and we can see how much more will come soon.
ChatGPT 的发布启动了一条我们从未见过的增长曲线——在我们的公司、我们的行业以及整个世界。我们终于看到了我们一直希望从人工智能中获得的一些巨大的好处,并且我们可以看到很快会有更多的好处。
It hasn’t been easy. The road hasn’t been smooth and the right choices haven’t been obvious.
这并不容易。道路并不平坦,正确的选择也并不明显。
In the last two years, we had to build an entire company, almost from scratch, around this new technology. There is no way to train people for this except by doing it, and when the technology category is completely new, there is no one at all who can tell you exactly how it should be done.
在过去两年中,我们不得不围绕这项新技术从头开始建立一整个公司。除了亲身实践,没有办法培训人们做这件事,而且当技术类别是全新的时,根本没有人能确切地告诉你应该如何做。
Building up a company at such high velocity with so little training is a messy process. It’s often two steps forward, one step back (and sometimes, one step forward and two steps back). Mistakes get corrected as you go along, but there aren’t really any handbooks or guideposts when you’re doing original work. Moving at speed in uncharted waters is an incredible experience, but it is also immensely stressful for all the players. Conflicts and misunderstanding abound.
以如此高的速度建立一家公司,却缺乏培训,这是一个混乱的过程。通常是前进两步,后退一步(有时是前进一步,后退两步)。错误会随着你的前进得到纠正,但是当你做原创工作时,真的没有任何手册或指南。在未知的水域中快速前进是一种难以置信的体验,但对所有参与者来说也压力巨大。冲突和误解比比皆是。
These years have been the most rewarding, fun, best, interesting, exhausting, stressful, and—particularly for the last two—unpleasant years of my life so far. The overwhelming feeling is gratitude; I know that someday I’ll be retired at our ranch watching the plants grow, a little bored, and will think back at how cool it was that I got to do the work I dreamed of since I was a little kid. I try to remember that on any given Friday, when seven things go badly wrong by 1 pm.
这些年是我一生中迄今为止最有收获、最有趣、最好、最疲惫、最紧张,尤其是过去两年——最不愉快的几年。压倒一切的感觉是感激;我知道有一天我会在我们的牧场退休,看着植物生长,有点无聊,并且会回想起我能够做我从小就梦想的工作是多么酷。我试着记住这一点,在任何一个星期五,当下午 1 点之前有七件事出了大问题的时候。
A little over a year ago, on one particular Friday, the mAIn thing that had gone wrong that day was that I got fired by surprise on a video call, and then right after we hung up the board published a blog post about it. I was in a hotel room in Las Vegas. It felt, to a degree that is almost impossible to explain, like a dream gone wrong.
一年多前,在一个特别的星期五,那天发生的主要问题是,我在一次视频通话中意外被解雇了,然后就在我们挂断电话后,董事会发布了一篇关于此事的博客文章。我当时在拉斯维加斯的一家酒店房间里。这感觉就像一场噩梦,其程度几乎无法解释。
Getting fired in public with no warning kicked off a really crazy few hours, and a pretty crazy few days. The “fog of war” was the strangest part. None of us were able to get satisfactory answers about what had happened, or why.
在没有任何警告的情况下被公开解雇,引发了非常疯狂的几个小时,以及相当疯狂的几天。“战争迷雾”是最奇怪的部分。我们没有人能够得到关于发生了什么或为什么发生的满意答案。
The whole event was, in my opinion, a big failure of governance by well-meaning people, myself included. Looking back, I certainly wish I had done things differently, and I’d like to believe I’m a better, more thoughtful leader today than I was a year ago.
在我看来,整个事件是包括我在内的善意人士在治理方面的重大失败。回想起来,我当然希望我当时做了不同的事情,而且我愿意相信今天的我比一年前是一个更好、更深思熟虑的领导者。
I also learned the importance of a board with diverse viewpoints and broad experience in managing a complex set of challenges. Good governance requires a lot of trust and credibility. I appreciate the way so many people worked together to build a stronger system of governance for OpenAI that enables us to pursue our mission of ensuring that AGI benefits all of humanity.
我还了解到,拥有一个具有不同观点和广泛经验的董事会在管理一系列复杂挑战方面的重要性。良好的治理需要大量的信任和信誉。我很感谢这么多人一起努力,为 OpenAI 建立了一个更强大的治理体系,使我们能够追求我们的使命,确保 AGI 造福全人类。
My biggest takeaway is how much I have to be thankful for and how many people I owe gratitude towards: to everyone who works at OpenAI and has chosen to spend their time and effort going after this dream, to friends who helped us get through the crisis moments, to our partners and customers who supported us and entrusted us to enable their success, and to the people in my life who showed me how much they cared. [1]
我最大的收获是我有多么感激,以及我有多少人要感谢:感谢在 OpenAI 工作的每一个人,他们选择花费时间和精力去追逐这个梦想;感谢帮助我们度过危机时刻的朋友们;感谢支持我们并委托我们帮助他们取得成功的合作伙伴和客户;感谢我生命中那些向我表达了他们有多么关心我的人。[1]
We all got back to the work in a more cohesive and positive way and I’m very proud of our focus since then. We have done what is easily some of our best research ever. We grew from about 100 million weekly active users to more than 300 million. Most of all, we have continued to put technology out into the world that people genuinely seem to love and that solves real problems.
我们都以一种更具凝聚力和积极的方式回到了工作中,我为我们从那时起的专注感到非常自豪。我们完成了一些有史以来最好的研究。我们的周活跃用户从大约 1 亿增长到 3 亿多。最重要的是,我们继续向世界推出人们真正喜爱并解决实际问题的技术。
Nine years ago, we really had no idea what we were eventually going to become; even now, we only sort of know. AI development has taken many twists and turns and we expect more in the future.
九年前,我们真的不知道我们最终会变成什么样子;即使是现在,我们也只是大概知道。人工智能的发展经历了许多曲折,我们预计未来还会有更多曲折。
Some of the twists have been joyful; some have been hard. It’s been fun watching a steady stream of research miracles occur, and a lot of naysayers have become true believers. We’ve also seen some colleagues split off and become competitors. Teams tend to turn over as they scale, and OpenAI scales really fast. I think some of this is unavoidable—startups usually see a lot of turnover at each new major level of scale, and at OpenAI numbers go up by orders of magnitude every few months. The last two years have been like a decade at a normal company. When any company grows and evolves so fast, interests naturally diverge. And when any company in an important industry is in the lead, lots of people attack it for all sorts of reasons, especially when they are trying to compete with it.
一些曲折是令人愉快的;有些则很艰难。看到一连串的研究奇迹发生,以及许多反对者变成了真正的信徒,这很有趣。我们也看到一些同事分裂并成为竞争对手。团队往往会随着规模的扩大而发生人员更替,而 OpenAI 的规模增长非常快。我认为其中一些是不可避免的——初创公司通常会在每个新的主要规模级别上看到大量的人员流动,而在 OpenAI,数字每隔几个月就会增加几个数量级。过去两年就像在一家普通公司工作了十年。当任何一家公司发展和演变得如此之快时,利益自然会出现分歧。当任何一家重要行业的公司处于领先地位时,很多人会出于各种原因攻击它,尤其是当他们试图与之竞争时。
Our vision won’t change; our tactics will continue to evolve. For example, when we started we had no idea we would have to build a product company; we thought we were just going to do great research. We also had no idea we would need such a crazy amount of capital. There are new things we have to go build now that we didn’t understand a few years ago, and there will be new things in the future we can barely imagine now.
我们的愿景不会改变;我们的策略将继续发展。例如,当我们开始时,我们不知道我们必须建立一家产品公司;我们以为我们只是要做伟大的研究。我们也不知道我们需要如此疯狂的资本。现在我们必须去构建一些几年前我们不理解的新事物,未来还会有一些我们现在几乎无法想象的新事物。
We are proud of our track-record on research and deployment so far, and are committed to continuing to advance our thinking on safety and benefits sharing. We continue to believe that the best way to make an AI system safe is by iteratively and gradually releasing it into the world, giving society time to adapt and co-evolve with the technology, learning from experience, and continuing to make the technology safer. We believe in the importance of being world leaders on safety and alignment research, and in guiding that research with feedback from real world applications.
到目前为止,我们对我们在研究和部署方面的记录感到自豪,并致力于继续推进我们在安全和利益共享方面的思考。我们仍然相信,使人工智能系统安全的最佳方法是迭代和逐步地将其发布到世界上,让社会有时间适应并与技术共同发展,从经验中学习,并继续使技术更安全。我们相信在安全和对齐研究方面成为世界领导者的重要性,并用现实世界应用的反馈来指导这项研究。
We are now confident we know how to build AGI as we have traditionally understood it. We believe that, in 2025, we may see the first AI agents “join the workforce” and materially change the output of companies. We continue to believe that iteratively putting great tools in the hands of people leads to great, broadly-distributed outcomes.
我们现在确信我们知道如何构建我们传统上理解的 AGI。我们相信,到 2025 年,我们可能会看到第一批人工智能代理“加入劳动力大军”,并实质性地改变公司的产出。我们仍然相信,迭代地将伟大的工具交到人们手中会带来伟大的、广泛分布的结果。
We are beginning to turn our aim beyond that, to superintelligence in the true sense of the word. We love our current products, but we are here for the glorious future. With superintelligence, we can do anything else. Superintelligent tools could massively accelerate scientific discovery and innovation well beyond what we are capable of doing on our own, and in turn massively increase abundance and prosperity.
我们开始将目标转向更远的地方,转向真正意义上的超级智能。我们热爱我们目前的产品,但我们是为了光辉的未来而来。有了超级智能,我们可以做任何其他事情。超级智能工具可以极大地加速科学发现和创新,远远超出我们自己能够做到的程度,从而极大地增加富足和繁荣。
This sounds like science fiction right now, and somewhat crazy to even talk about it. That’s alright—we’ve been there before and we’re OK with being there again. We’re pretty confident that in the next few years, everyone will see what we see, and that the need to act with great care, while still maximizing broad benefit and empowerment, is so important. Given the possibilities of our work, OpenAI cannot be a normal company.
这听起来像是科幻小说,甚至谈论它都有点疯狂。没关系——我们以前就经历过,我们也可以再次经历。我们非常有信心,在接下来的几年里,每个人都会看到我们所看到的,并且在仍然最大化广泛利益和赋权的同时,谨慎行事的必要性是如此重要。鉴于我们工作的可能性,OpenAI 不可能成为一家普通公司。
How lucky and humbling it is to be able to play a role in this work.
能够在这项工作中发挥作用是多么幸运和谦卑。
(Thanks to Josh Tyrangiel for sort of prompting this. I wish we had had a lot more time.)
(感谢 Josh Tyrangiel 的某种程度上的提示。我希望我们有更多的时间。)
[1]
There were a lot of people who did incredible and gigantic amounts of work to help OpenAI, and me personally, during those few days, but two people stood out from all others.
在那几天里,有很多人做了令人难以置信的巨大工作来帮助 OpenAI 和我个人,但有两个人比其他人更突出。
Ron Conway and Brian Chesky went so far above and beyond the call of duty that I’m not even sure how to describe it. I’ve of course heard stories about Ron’s ability and tenaciousness for years and I’ve spent a lot of time with Brian over the past couple of years getting a huge amount of help and advice.
Ron Conway 和 Brian Chesky 所做的远远超出了职责范围,我甚至不知道该如何描述。当然,多年来我一直听说 Ron 的能力和坚韧不拔,并且在过去几年里,我花了很多时间与 Brian 在一起,获得了大量的帮助和建议。
But there’s nothing quite like being in the foxhole with people to see what they can really do. I am reasonably confident OpenAI would have fallen apart without their help; they worked around the clock for days until things were done.
但是,没有什么能比得上和人们一起在战壕里更能看出他们真正的能力了。我有理由相信,如果没有他们的帮助,OpenAI 就会崩溃;他们夜以继日地工作了几天,直到事情完成。
Although they worked unbelievably hard, they stayed calm and had clear strategic thought and great advice throughout. They stopped me from making several mistakes and made none themselves. They used their vast networks for everything needed and were able to navigate many complex situations. And I’m sure they did a lot of things I don’t know about.
尽管他们工作得令人难以置信地努力,但他们始终保持冷静,并始终拥有清晰的战略思维和出色的建议。他们阻止我犯了几个错误,而他们自己没有犯任何错误。他们利用他们庞大的网络做了一切需要的事情,并且能够处理许多复杂的情况。我相信他们做了很多我不知道的事情。
What I will remember most, though, is their care, compassion, and support.
不过,我最记得的是他们的关心、同情和支持。
I thought I knew what it looked like to support a founder and a company, and in some small sense I did. But I have never before seen, or even heard of, anything like what these guys did, and now I get more fully why they have the legendary status they do. They are different and both fully deserve their genuinely unique reputations, but they are similar in their remarkable ability to move mountains and help, and in their unwavering commitment in times of need. The tech industry is far better off for having both of them in it.
我以为我知道支持创始人和公司是什么样子,从某种意义上说,我确实知道。但我以前从未见过,甚至从未听说过像这些人所做的那样的事情,现在我更充分地理解了为什么他们拥有传奇的地位。他们是不同的,并且都完全配得上他们真正独特的声誉,但他们在移山和帮助方面的非凡能力以及他们在需要时的坚定承诺方面是相似的。科技行业因为有他们两个而变得更好。
There are others like them; it is an amazingly special thing about our industry and does much more to make it all work than people realize. I look forward to paying it forward.
还有其他人像他们一样;这是我们行业的一个非常特别的事情,它比人们意识到的更能使这一切运转起来。我期待着将这份情谊传递下去。
On a more personal note, thanks especially to Ollie for his support that weekend and always; he is incredible in every way and no one could ask for a better partner.
更私人的一点是,特别感谢 Ollie 在那个周末和一直以来的支持;他在各个方面都令人难以置信,没有人能要求一个更好的伴侣了。
参考:
阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”
未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问进入。
截止到12月25日 ”未来知识库”精选的100部前沿科技趋势报告
2024 美国众议院人工智能报告:指导原则、前瞻性建议和政策提案
未来今日研究所:2024 技术趋势报告 - 移动性,机器人与无人机篇
Deepmind:AI 加速科学创新发现的黄金时代报告
Continental 大陆集团:2024 未来出行趋势调研报告
埃森哲:未来生活趋势 2025
国际原子能机构 2024 聚变关键要素报告 - 聚变能发展的共同愿景
哈尔滨工业大学:2024 具身大模型关键技术与应用报告
爱思唯尔(Elsevier):洞察 2024:科研人员对人工智能的态度报告
李飞飞、谢赛宁新作「空间智能」 等探索多模态大模型性能
欧洲议会:2024 欧盟人工智能伦理指南:背景和实施
通往人工超智能的道路:超级对齐的全面综述
清华大学:理解世界还是预测未来?世界模型综合综述
Transformer 发明人最新论文:利用基础模型自动搜索人工生命
兰德公司:新兴技术监督框架发展的现状和未来趋势的技术监督报告
麦肯锡全球研究院:2024 年全球前沿动态图表呈现
兰德公司:新兴技术领域的全球态势综述
前瞻:2025 年人形机器人产业发展蓝皮书 - 人形机器人量产及商业化关键挑战
美国国家标准技术研究院(NIST):2024 年度美国制造业统计数据报告(英文版)
罗戈研究:2024 决策智能:值得关注的决策革命研究报告
美国航空航天专家委员会:2024 十字路口的 NASA 研究报告
中国电子技术标准化研究院 2024 扩展现实 XR 产业和标准化研究报告
GenAI 引领全球科技变革关注 AI 应用的持续探索
国家低空经济融创中心中国上市及新三板挂牌公司低空经济发展报告
2025 年计算机行业年度策略从 Infra 到 AgentAI 创新的无尽前沿
多模态可解释人工智能综述:过去、现在与未来
【斯坦福博士论文】探索自监督学习中对比学习的理论基础
《机器智能体的混合认知模型》最新 128 页
Open AI 管理 AI 智能体的实践
未来生命研究院 FLI2024 年 AI 安全指数报告 英文版
兰德公司 2024 人工智能项目失败的五大根本原因及其成功之道 - 避免 AI 的反模式 英文版
Linux 基金会 2024 去中心化与人工智能报告 英文版
脑机接口报告脑机接口机器人中的人机交换
联合国贸发会议 2024 年全球科技创新合作促发展研究报告 英文版
Linux 基金会 2024 年世界开源大会报告塑造人工智能安全和数字公共产品合作的未来 英文版
Gartner2025 年重要战略技术趋势报告 英文版
Fastdata 极数 2024 全球人工智能简史
中电科:低空航行系统白皮书,拥抱低空经济
迈向科学发现的生成式人工智能研究报告:进展、机遇与挑战
哈佛博士论文:构建深度学习的理论基础:实证研究方法
Science 论文:面对 “镜像生物” 的风险
镜面细菌技术报告:可行性和风险
Neurocomputing 不受限制地超越人类智能的人工智能可能性
166 页 - 麦肯锡:中国与世界 - 理解变化中的经济联系(完整版)
未来生命研究所:《2024 人工智能安全指数报告》
德勤:2025 技术趋势报告 空间计算、人工智能、IT 升级。
2024 世界智能产业大脑演化趋势报告(12 月上)公开版
联邦学习中的成员推断攻击与防御:综述
兰德公司 2024 人工智能和机器学习在太空领域感知中的应用 - 基于两项人工智能案例英文版
Wavestone2024 年法国工业 4.0 晴雨表市场趋势与经验反馈 英文版
Salesforce2024 年制造业趋势报告 - 来自全球 800 多位行业决策者对运营和数字化转型的洞察 英文版
MicrosoftAzure2024 推动应用创新的九大 AI 趋势报告
DeepMind:Gemini,一个高性能多模态模型家族分析报告
模仿、探索和自我提升:慢思维推理系统的复现报告
自我发现:大型语言模型自我组成推理结构
2025 年 101 项将 (或不会) 塑造未来的技术趋势白皮书
《自然杂志》2024 年 10 大科学人物推荐报告
量子位智库:2024 年度 AI 十大趋势报告
华为:鸿蒙 2030 愿景白皮书(更新版)
电子行业专题报告:2025 年万物 AI 面临的十大待解难题 - 241209
中国信通院《人工智能发展报告(2024 年)》
美国安全与新兴技术中心:《追踪美国人工智能并购案》报告
Nature 研究报告:AI 革命的数据正在枯竭,研究人员该怎么办?
NeurIPS 2024 论文:智能体不够聪明怎么办?让它像学徒一样持续学习
LangChain 人工智能代理(AI agent)现状报告
普华永道:2024 半导体行业状况报告发展趋势与驱动因素
觅途咨询:2024 全球人形机器人企业画像与能力评估报告
美国化学会 (ACS):2024 年纳米材料领域新兴趋势与研发进展报告
GWEC:2024 年全球风能报告英文版
Chainalysis:2024 年加密货币地理报告加密货币采用的区域趋势分析
2024 光刻机产业竞争格局国产替代空间及产业链相关公司分析报告
世界经济论坛:智能时代,各国对未来制造业和供应链的准备程度
兰德:《保护人工智能模型权重:防止盗窃和滥用前沿模型》-128 页报告
经合组织 成年人是否具备在不断变化的世界中生存所需的技能 199 页报告
医学应用中的可解释人工智能:综述
复旦最新《智能体模拟社会》综述
《全球导航卫星系统(GNSS)软件定义无线电:历史、当前发展和标准化工作》最新综述
《基础研究,致命影响:军事人工智能研究资助》报告
欧洲科学的未来 - 100 亿地平线研究计划
Nature:欧盟正在形成一项科学大型计划
Nature 欧洲科学的未来
欧盟科学 —— 下一个 1000 亿欧元
欧盟向世界呼吁 加入我们价值 1000 亿欧元的研究计划
DARPA 主动社会工程防御计划(ASED)《防止删除信息和捕捉有害行为者(PIRANHA)》技术报告
兰德《人工智能和机器学习用于太空域感知》72 页报告
构建通用机器人生成范式:基础设施、扩展性与策略学习(CMU 博士论文)
世界贸易组织 2024 智能贸易报告 AI 和贸易活动如何双向塑造 英文版
人工智能行业应用建设发展参考架构
波士顿咨询 2024 年欧洲天使投资状况报告 英文版
2024 美国制造业计划战略规划
【新书】大规模语言模型的隐私与安全
人工智能行业海外市场寻找 2025 爆款 AI 应用 - 241204
美国环保署 EPA2024 年版汽车趋势报告英文版
经济学人智库 EIU2025 年行业展望报告 6 大行业的挑战机遇与发展趋势 英文版
华为 2024 迈向智能世界系列工业网络全连接研究报告
华为迈向智能世界白皮书 2024 - 计算
华为迈向智能世界白皮书 2024 - 全光网络
华为迈向智能世界白皮书 2024 - 数据通信
华为迈向智能世界白皮书 2024 - 无线网络
安全牛 AI 时代深度伪造和合成媒体的安全威胁与对策 2024 版
2024 人形机器人在工业领域发展机遇行业壁垒及国产替代空间分析报告
《2024 年 AI 现状分析报告》2-1-3 页.zip
万物智能演化理论,智能科学基础理论的新探索 - newv2
世界经济论坛 智能时代的食物和水系统研究报告
生成式 AI 时代的深伪媒体生成与检测:综述与展望
科尔尼 2024 年全球人工智能评估 AIA 报告追求更高层次的成熟度规模化和影响力英文版
计算机行业专题报告 AI 操作系统时代已至 - 241201
Nature 人工智能距离人类水平智能有多近?
Nature 开放的人工智能系统实际上是封闭的
斯坦福《统计学与信息论》讲义,668 页 pdf
国家信息中心华为城市一张网 2.0 研究报告 2024 年
国际清算银行 2024 生成式 AI 的崛起对美国劳动力市场的影响分析报告 渗透度替代效应及对不平等状况英文版
大模型如何判决?从生成到判决:大型语言模型作为裁判的机遇与挑战
毕马威 2024 年全球半导体行业展望报告
MR 行业专题报告 AIMR 空间计算定义新一代超级个人终端 - 241119
DeepMind 36 页 AI4Science 报告:全球实验室被「AI 科学家」指数级接管
《人工智能和机器学习对网络安全的影响》最新 273 页
2024 量子计算与人工智能无声的革命报告
未来今日研究所:2024 技术趋势报告 - 广义计算篇
科睿唯安中国科学院 2024 研究前沿热度指数报告
文本到图像合成:十年回顾
《以人为中心的大型语言模型(LLM)研究综述》
经合组织 2024 年数字经济展望报告加强连通性创新与信任第二版
波士顿咨询 2024 全球经济体 AI 成熟度矩阵报告 英文版
理解世界还是预测未来?世界模型的综合综述
GoogleCloudCSA2024AI 与安全状况调研报告 英文版
英国制造商组织 MakeUK2024 英国工业战略愿景报告从概念到实施
花旗银行 CitiGPS2024 自然环境可持续发展新前沿研究报告
国际可再生能源署 IRENA2024 年全球气候行动报告
Cell: 物理学和化学 、人工智能知识领域的融合
智次方 2025 中国 5G 产业全景图谱报告
上下滑动查看更多
来源:人工智能学家