FlowMo: 模式搜索+扩散模型提升图像Token化性能
自VQGAN和Latent Diffusion Models等视觉生成框架问世以来,先进的图像生成系统通常采用两阶段架构:首先将视觉数据Token化或压缩至低维潜在空间,随后学习生成模型。传统Token化器训练遵循标准范式,通过MSE、感知损失和对抗性损失的组
自VQGAN和Latent Diffusion Models等视觉生成框架问世以来,先进的图像生成系统通常采用两阶段架构:首先将视觉数据Token化或压缩至低维潜在空间,随后学习生成模型。传统Token化器训练遵循标准范式,通过MSE、感知损失和对抗性损失的组
当我们看到一张猫咪照片时,大脑自然就能识别「这是一只猫」。但对计算机来说,它看到的是一个巨大的数字矩阵 —— 假设是一张 1000×1000 像素的彩色图片,实际上是一个包含 300 万个数字的数据集(1000×1000×3 个颜色通道)。每个数字代表一个像素