真实联网搜索Agent,7B媲美满血R1
大型语言模型 (LLM) 的发展日新月异,但实时 「 内化 」 与时俱进的知识仍然是一项挑战。如何让模型在面对复杂的知识密集型问题时,能够自主决策获取外部知识的策略?
大型语言模型 (LLM) 的发展日新月异,但实时 「 内化 」 与时俱进的知识仍然是一项挑战。如何让模型在面对复杂的知识密集型问题时,能够自主决策获取外部知识的策略?
大型语言模型 (LLM) 的发展日新月异,但实时「内化」与时俱进的知识仍然是一项挑战。如何让模型在面对复杂的知识密集型问题时,能够自主决策获取外部知识的策略?